Data Mining to Recognize Fail Parts in Manufacturing Process

نویسندگان

  • Wanida Kanarkard
  • Danaipong Chetchotsak
  • Daranee Hormdee
  • Neil Davey
چکیده

In many manufacturing processes, some key process parameters have very strong relationship with the normal or various faulty products of finished products. The abnormal changes of these process parameters could result in various categories of faulty products. In this paper, a data mining model is developed for on-line intelligent monitoring and diagnosis of the manufacturing processes. In the proposed model, an Apriori learning rules developed for monitoring the manufacturing process and recognizing faulty quality of the products being produced. In addition, this algorithm is developed to discover the causal relationship between manufacturing parameters and product quality. These extracted rules are applied for diagnosis of the manufacturing process; provide guidelines on improving the product quality. Therefore, the data mining system provides abnormal warnings, reveals assignable cause(s), and helps operators optimally set the process parameters. The proposed model is successfully applied to an assembly line in hard disk drive process, which improves the product quality and saves manufacturing cost.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A data mining approach to employee turnover prediction (case study: Arak automotive parts manufacturing)

Training and adaption of employees are time and money consuming. Employees’ turnover can be predicted by their organizational and personal historical data in order to reduce probable loss of organizations. Prediction methods are highly related to human resource management to obtain patterns by historical data. This article implements knowledge discovery steps on real data of a manufacturing pla...

متن کامل

Application of Kansei engineering and data mining in the Thai ceramic manufacturing

Ceramic is one of the highly competitive products in Thailand. Many Thai ceramic companies are attempting to know the customer needs and perceptions for making favorite products. To know customer needs is the target of designers and to develop a product that must satisfy customers. This research is applied Kansei Engineering (KE) and Data Mining (DM) into the customer driven product design proc...

متن کامل

Opinion Mining, Social Networks, Higher Education

Background and Aim: With the advent of technology and the use of social networks such as Instagram, Facebook, blogs, forums, and many other platforms, interactions of learners with one another and their lecturers have become progressively relaxed. This has led to the accumulation of large quantities of data and information about studentschr('39') attitudes, learning experiences, opinions, and f...

متن کامل

A Spatial Point Pattern Analysis to Recognize Fail Bit Patterns in Semiconductor Manufacturing

The yield management system is very important to produce high-quality semiconductor chips in the semiconductor manufacturing process. In order to improve quality of semiconductors, various tests are conducted in the post fabrication (FAB) process. During the test process, large amount of data are collected and the data includes a lot of information about defect. In general, the defect on the wa...

متن کامل

Perform Three Data Mining Tasks with Crowdsourcing Process

For data mining studies, because of the complexity of doing feature selection process in tasks by hand, we need to send some of labeling to the workers with crowdsourcing activities. The process of outsourcing data mining tasks to users is often handled by software systems without enough knowledge of the age or geography of the users' residence. Uncertainty about the performance of virtual user...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009